Як розв'язати тригонометричні рівняння прикладів. Розв'язання тригонометричних рівнянь

Урок та презентація на тему: "Рішення найпростіших тригонометричних рівнянь"

Додаткові матеріали
Шановні користувачі, не забувайте залишати свої коментарі, відгуки, побажання! Усі матеріали перевірені антивірусною програмою.

Посібники та тренажери в інтернет-магазині "Інтеграл" для 10 класу від 1С
Вирішуємо задачі з геометрії. Інтерактивні завдання на побудову у просторі
Програмне середовище "1С: Математичний конструктор 6.1"

Що вивчатимемо:
1. Що таке тригонометричні рівняння?

3. Два основні методи розв'язання тригонометричних рівнянь.
4. Однорідні тригонометричні рівняння.
5. Приклади.

Що таке тригонометричні рівняння?

Хлопці, ми з вами вивчили вже арксинуса, арккосинус, арктангенс та арккотангенс. Тепер давайте подивимося на тригонометричні рівняння загалом.

Тригонометричні рівняння – рівняння у якому змінна міститься під знаком тригонометричної функції.

Повторимо вид розв'язання найпростіших тригонометричних рівнянь:

1) Якщо |а|≤ 1, то рівняння cos(x) = a має розв'язок:

X = ± arccos(a) + 2πk

2) Якщо |а|≤ 1, то рівняння sin(x) = a має розв'язок:

3) Якщо |а| > 1, то рівняння sin(x) = a і cos(x) = a немає рішень 4) Рівняння tg(x)=a має розв'язання: x=arctg(a)+ πk

5) Рівняння ctg(x)=a має рішення: x=arcctg(a)+ πk

Для всіх формул k-ціле число

Найпростіші тригонометричні рівняння мають вигляд: Т(kx+m)=a, T-яка чи тригонометрична функція.

приклад.

Розв'язати рівняння: а) sin(3x)= √3/2

Рішення:

А) Позначимо 3x=t, тоді наше рівняння перепишемо як:

Розв'язання цього рівняння буде: t=((-1)^n)arcsin(√3 /2)+ πn.

З таблиці значень отримуємо: t=((-1)^n)×π/3+ πn.

Повернімося до нашої змінної: 3x =((-1)^n)×π/3+ πn,

Тоді x=((-1)^n)×π/9+ πn/3

Відповідь: x=((-1)^n)×π/9+ πn/3, де n-ціле число. (-1) ^ n – мінус один у ступені n.

Ще приклади тригонометричних рівнянь.

Розв'язати рівняння: а) cos(x/5)=1 б)tg(3x- π/3)= √3

Рішення:

А) На цей раз перейдемо безпосередньо до обчислення коренів рівняння відразу:

X/5= ± arccos(1) + 2πk. Тоді x/5= πk => x=5πk

Відповідь: x=5πk, де k – ціле число.

Б) Запишемо як: 3x- π/3=arctg(√3)+ πk. Ми знаємо що: arctg(√3)= π/3

3x- π/3= π/3+ πk => 3x=2π/3 + πk => x=2π/9 + πk/3

Відповідь: x=2π/9 + πk/3, де k – ціле число.

Розв'язати рівняння: cos(4x)= √2/2. І знайти все коріння на відрізку.

Рішення:

Розв'яжемо у загальному вигляді наше рівняння: 4x= ± arccos(√2/2) + 2πk

4x= ± π/4 + 2πk;

X= ± π/16+ πk/2;

Тепер давайте подивимося яке коріння потраплять на наш відрізок. При k При k=0, x= π/16 ми потрапили в заданий відрізок .
При к=1, x= π/16+ π/2=9π/16, знову потрапили.
При k = 2, x = π / 16 + π = 17π / 16, а тут ось вже не потрапили, а значить при великих k теж свідомо не потраплятимемо.

Відповідь: x= π/16, x= 9π/16

Два основні методи вирішення.

Ми розглянули найпростіші тригонометричні рівняння, але існують складніші. Для їх вирішення застосовують метод введення нової змінної та метод розкладання на множники. Давайте розглянемо приклади.

Розв'яжемо рівняння:

Рішення:
Для вирішення нашого рівняння скористаємося методом уведення нової змінної, позначимо: t=tg(x).

В результаті заміни отримаємо: t 2 + 2t -1 = 0

Знайдемо коріння квадратного рівняння: t=-1 та t=1/3

Тоді tg(x)=-1 і tg(x)=1/3, отримали найпростіше тригонометричне рівняння, знайдемо його коріння.

X=arctg(-1) +πk= -π/4+πk; x=arctg(1/3) + πk.

Відповідь: x=-π/4+πk; x=arctg(1/3) + πk.

Приклад вирішення рівняння

Розв'язати рівнянь: 2sin 2(x) + 3 cos(x) = 0

Рішення:

Скористаємося тотожністю: sin 2(x) + cos 2(x)=1

Наше рівняння набуде вигляду:2-2cos 2(x) + 3 cos(x) = 0

2 cos 2(x) - 3 cos(x) -2 = 0

Введемо заміну t=cos(x): 2t 2 -3t - 2 = 0

Рішенням нашого квадратного рівняння є коріння: t=2 та t=-1/2

Тоді cos(x)=2 та cos(x)=-1/2.

Т.к. косинус не може набувати значення більше одиниці, то cos(x)=2 не має коріння.

Для cos(x)=-1/2: x=± arccos(-1/2) + 2πk; x= ±2π/3 + 2πk

Відповідь: x= ±2π/3 + 2πk

Однорідні тригонометричні рівняння.

Визначення: Рівняння виду a sin(x)+b cos(x) називаються однорідними тригонометричними рівняннями першого ступеня.

Рівняння виду

однорідними тригонометричними рівняннями другого ступеня.

Для вирішення однорідного тригонометричного рівняння першого ступеня розділимо його на cos(x): Ділити на косинус не можна якщо він дорівнює нулю, давайте переконаємося, що це не так:
Нехай cos(x)=0, тоді asin(x)+0=0 => sin(x)=0, але синус і косинус одночасно не дорівнюють нулю, отримали протиріччя, тому можна сміливо ділити на нуль.

Вирішити рівняння:
Приклад: cos 2(x) + sin(x) cos(x) = 0

Рішення:

Винесемо загальний множник: cos(x)(c0s(x) + sin(x)) = 0

Тоді нам треба вирішити два рівняння:

Cos(x)=0 та cos(x)+sin(x)=0

Cos(x)=0 при x= π/2 + πk;

Розглянемо рівняння cos(x)+sin(x)=0 Розділимо наше рівняння cos(x):

1+tg(x)=0 => tg(x)=-1 => x=arctg(-1) +πk= -π/4+πk

Відповідь: x= π/2 + πk і x=-π/4+πk

Як розв'язувати однорідні тригонометричні рівняння другого ступеня?
Діти, дотримуйтесь цих правил завжди!

1. Подивитися чому дорівнює коефіцієнт а, якщо а=0 то тоді наше рівняння набуде вигляду cos(x)(bsin(x)+ccos(x)), приклад розв'язання якого на попередньому слайді

2. Якщо a≠0, потрібно поділити обидві частини рівняння на косинус у квадраті, отримаємо:


Робимо заміну змінної t=tg(x) отримуємо рівняння:

Вирішити приклад №:3

Вирішити рівняння:
Рішення:

Розділимо обидві частини рівняння на косинус квадрат:

Робимо заміну змінної t = tg (x): t 2 + 2 t - 3 = 0

Знайдемо коріння квадратного рівняння: t=-3 та t=1

Тоді: tg(x)=-3 => x=arctg(-3) + πk=-arctg(3) + πk

Tg(x)=1 => x= π/4+ πk

Відповідь: x=-arctg(3) + πk і x= π/4+ πk

Вирішити приклад №:4

Вирішити рівняння:

Рішення:
Перетворимо наш вираз:


Вирішувати такі рівняння ми вміємо: x= - π/4 + 2πk та x=5π/4 + 2πk

Відповідь: x= - π/4 + 2πk та x=5π/4 + 2πk

Вирішити приклад №:5

Вирішити рівняння:

Рішення:
Перетворимо наш вираз:


Введемо заміну tg(2x)=t:2 2 - 5t + 2 = 0

Рішенням нашого квадратного рівняння буде коріння: t=-2 і t=1/2

Тоді отримуємо: tg(2x)=-2 та tg(2x)=1/2
2x=-arctg(2)+ πk => x=-arctg(2)/2 + πk/2

2x= arctg(1/2) + πk => x=arctg(1/2)/2+ πk/2

Відповідь: x=-arctg(2)/2 + πk/2 і x=arctg(1/2)/2+ πk/2

Завдання для самостійного вирішення.

1) Розв'язати рівняння

А) sin(7x)= 1/2 б) cos(3x)= √3/2 в) cos(-x) = -1 г) tg(4x) = √3 д) ctg(0.5x) = -1.7

2) Розв'язати рівняння: sin(3x)= √3/2. І знайти все коріння на відрізку [π/2; π].

3) Розв'язати рівняння: ctg 2(x) + 2ctg(x) + 1 =0

4) Розв'язати рівняння: 3 sin 2(x) + √3sin(x) cos(x) = 0

5) Розв'язати рівняння:3sin 2 (3x) + 10 sin(3x)cos(3x) + 3 cos 2 (3x) =0

6)Вирішити рівняння:cos 2 (2x) -1 - cos(x) =√3/2 -sin 2 (2x)

Відеокурс «Отримай п'ятірку» включає всі теми, необхідні для успішного складання ЄДІ з математики на 60-65 балів. Повністю всі завдання 1-13 Профільного ЄДІ з математики. Підходить також для здачі Базового ЄДІ з математики. Якщо ви хочете здати ЄДІ на 90-100 балів, вам треба вирішувати частину 1 за 30 хвилин і без помилок!

Курс підготовки до ЄДІ для 10-11 класів, а також для викладачів. Все необхідне, щоб вирішити частину 1 ЄДІ з математики (перші 12 завдань) та задачу 13 (тригонометрія). А це понад 70 балів на ЄДІ, і без них не обійтись ні стобальнику, ні гуманітарію.

Уся необхідна теорія. Швидкі способи вирішення, пастки та секрети ЄДІ. Розібрано всі актуальні завдання частини 1 із Банку завдань ФІПД. Курс повністю відповідає вимогам ЄДІ-2018.

Курс містить 5 великих тем, по 2,5 години кожна. Кожна тема дається з нуля, це просто і зрозуміло.

Сотні завдань ЄДІ. Текстові завдання та теорія ймовірностей. Прості і легко запам'ятовуються алгоритми розв'язання задач. Геометрія. Теорія, довідковий матеріал, аналіз всіх типів завдань ЄДІ. Стереометрія. Хитрі прийоми розв'язання, корисні шпаргалки, розвиток просторової уяви. Тригонометрія з нуля - до завдання 13. Розуміння замість зубріння. Наочне пояснення складних понять. Алгебра. Коріння, ступеня та логарифми, функція та похідна. База на вирішення складних завдань 2 частини ЄДІ.


Приклади:

\(2\sin(⁡x) = \sqrt(3)\)
tg\((3x)=-\) \(\frac(1)(\sqrt(3))\)
\(4\cos^2⁡x+4\sin⁡x-1=0\)
\(\cos⁡4x+3\cos⁡2x=1\)

Як вирішувати тригонометричні рівняння:

Будь-яке тригонометричне рівняння потрібно прагнути звести до одного з видів:

\(\sin⁡t=a\), \(\cos⁡t=a\), tg\(t=a\), ctg\(t=a\)

де \(t\) - вираз з іксом, \(a\) - число. Такі тригонометричні рівняння називаються найпростішими. Їх легко вирішувати за допомогою () або спеціальних формул:


Інфографіку про вирішення найпростіших тригонометричних рівнянь дивись тут: , і .

приклад . Розв'яжіть тригонометричне рівняння \(\sin⁡x=-\)\(\frac(1)(2)\).
Рішення:

Відповідь: \(\left[ \begin(gathered)x=-\frac(π)(6)+2πk, \\ x=-\frac(5π)(6)+2πn, \end(gathered)\right.\) \(k, n∈Z\)

Що означає кожен символ у формулі коренів тригонометричних рівнянь дивись у .

Увага!Рівняння \(\sin⁡x=a\) та \(\cos⁡x=a\) не мають рішень, якщо \(a ϵ (-∞;-1)∪(1;∞)\). Тому що синус і косинус при будь-яких ікс більші або рівні \(-1\) і менше або рівні \(1\):

\(-1≤\sin x≤1\) \(-1≤\cos⁡x≤1\)

приклад . Розв'язати рівняння \(\cos⁡x=-1,1\).
Рішення: \(-1,1<-1\), а значение косинуса не может быть меньше \(-1\). Значит у уравнения нет решения.
Відповідь : рішень немає.


приклад . Розв'яжіть тригонометричне рівняння tg\(⁡x=1\).
Рішення:

Розв'яжемо рівняння за допомогою числового кола. Для цього:
1) Побудуємо коло)
2) Побудуємо осі (x) і (y) і вісь тангенсів (вона проходить через точку ((0; 1)) паралельно осі (y)).
3) На осі тангенсів відзначимо точку (1).
4) З'єднаємо цю точку та початок координат – прямий.
5) Зазначимо точки перетину цього прямого та числового кола.
6)Підпишемо значення цих точок: \(\frac(π)(4)\) ,\(\frac(5π)(4)\)
7) Запишемо всі значення цих точок. Оскільки вони знаходяться одна від одної на відстані рівно в \(π\), то всі значення можна записати однією формулою:

Відповідь: \(x=\)\(\frac(π)(4)\) \(+πk\), \(k∈Z\).

приклад . Розв'яжіть тригонометричне рівняння \(\cos⁡(3x+\frac(π)(4))=0\).
Рішення:


Знову скористаємося числовим колом.
1) Побудуємо коло, осі (x) і (y).
2) На осі косинусів (вісь \(x\)) відзначимо \(0\).
3) Проведемо перпендикуляр до осі косінусів через цю точку.
4) Зазначимо точки перетину перпендикуляра та кола.
5) Підпишемо значення цих точок: \(-\) \(\frac(π)(2)\),\(\frac(π)(2)\).
6) Випишемо все значення цих точок і прирівняємо їх до косинуса (до того що всередині косинуса).

\(3x+\)\(\frac(π)(4)\) \(=±\)\(\frac(π)(2)\) \(+2πk\), \(k∈Z\)

\(3x+\)\(\frac(π)(4)\) \(=\)\(\frac(π)(2)\) \(+2πk\) \(3x+\)\(\frac( π)(4)\) \(=-\)\(\frac(π)(2)\) \(+2πk\)

8) Як завжди в рівняннях виражатимемо (x).
Не забувайте ставитися до чисел з (π), так само до (1), (2), (frac(1) (4)) і т.п. Це такі ж числа, як і решта. Жодної числової дискримінації!

\(3x=-\)\(\frac(π)(4)\) \(+\)\(\frac(π)(2)\) \(+2πk\) \(3x=-\)\ (\frac(π)(4)\) \(+\)\(\frac(π)(2)\) \(+2πk\)
\(3x=\)\(\frac(π)(4)\) \(+2πk\) \(|:3\) \(3x=-\)\(\frac(3π)(4)\) \(+2πk\) \(|:3\)
\(x=\)\(\frac(π)(12)\) \(+\)\(\frac(2πk)(3)\) \(x=-\)\(\frac(π)( 4)\) \(+\)\(\frac(2πk)(3)\)

Відповідь: \(x=\)\(\frac(π)(12)\) \(+\)\(\frac(2πk)(3)\) \(x=-\)\(\frac(π)( 4)\) \(+\)\(\frac(2πk)(3)\) , \(k∈Z\).

Зводити тригонометричні рівняння до найпростіших – завдання творче, тут потрібно використовувати і , і особливі методи розв'язків рівнянь:
- Метод (найпопулярніший в ЄДІ).
- Метод.
- метод допоміжних аргументів.


Розглянемо приклад розв'язання квадратно-тригонометричного рівняння

приклад . Розв'яжіть тригонометричне рівняння \(2\cos^2⁡x-5\cos⁡x+2=0\)
Рішення:

\(2\cos^2⁡x-5\cos⁡x+2=0\)

Зробимо заміну \(t=\cos⁡x).

Наше рівняння перетворилося на типове. Можна його вирішити за допомогою.

\ (D = 25-4 \ cdot 2 \ cdot 2 = 25-16 = 9 \)

\(t_1=\)\(\frac(5-3)(4)\) \(=\)\(\frac(1)(2)\) ; \(t_2=\)\(\frac(5+3)(4)\) \(=2\)

Робимо зворотну заміну.

\(\cos⁡x=\)\(\frac(1)(2)\); \(\cos⁡x=2\)

Перше рівняння вирішуємо за допомогою числового кола.
Друге рівняння немає рішень т.к. \(\cos⁡x∈[-1;1]\) і двом бути рівним не може ні за яких іксів.

Запишемо всі числа, що лежать у цих точках.

Відповідь: \(x=±\)\(\frac(π)(3)\) \(+2πk\), \(k∈Z\).

Приклад розв'язання тригонометричного рівняння з дослідженням ОДЗ:

Приклад(ЄДІ) . Розв'яжіть тригонометричне рівняння \(=0\)

\(\frac(2\cos^2⁡x-\sin(⁡2x))(ctg x)\)\(=0\)

Є дріб і є котангенс – отже треба записати. Нагадаю, що котангенс це фактично дріб:

ctg\(x=\)\(\frac(\cos⁡x)(\sin⁡x)\)

Тому ОДЗ для ctg\(x\): \(\sin⁡x≠0).

ОДЗ: ctg \ (x ≠ 0 \); \(\sin⁡x≠0\)

\(x≠±\)\(\frac(π)(2)\) \(+2πk\); \(x≠πn\); \(k, n∈Z\)

Зазначимо «нерішення» на числовому колі.

\(\frac(2\cos^2⁡x-\sin(⁡2x))(ctg x)\)\(=0\)

Позбавимося рівняння від знаменника, помноживши його на ctg (x). Ми можемо це зробити, оскільки написали вище, що ctg\(x ≠0\).

\(2\cos^2⁡x-\sin⁡(2x)=0\)

Застосуємо формулу подвійного кута для синуса: \(\sin⁡(2x)=2\sin⁡x\cos⁡x\).

\(2\cos^2⁡x-2\sin⁡x\cos⁡x=0\)

Якщо у вас руки потягнулися поділити на косинус - обсмикніть їх! Ділити на вираз зі змінною можна, якщо воно точно не дорівнює нулю (наприклад, такі: \(x^2+1,5^x\)). Натомість винесемо \(\cos⁡x\) за дужки.

\(\cos⁡x (2\cos⁡x-2\sin⁡x)=0\)

«Розщепимо» рівняння на два.

\(\cos⁡x=0); \(2\cos⁡x-2\sin⁡x=0\)

Перше рівняння з розв'язком за допомогою числового кола. Друге рівняння поділимо на \(2\) і перенесемо \(\sin⁡x\) у праву частину.

\(x=±\)\(\frac(π)(2)\) \(+2πk\), \(k∈Z\). \(\cos⁡x=\sin⁡x\)

Коріння, яке вийшло не входить до ОДЗ. Тому їх у відповідь записувати не будемо.
Друге рівняння типове. Поділимо його на \(\sin⁡x\) (\(\sin⁡x=0\) не може бути рішенням рівняння тому що в цьому випадку \(\cos⁡x=1\) або \(\cos⁡ x = -1 \)).

Знову використовуємо коло.


\(x=\)\(\frac(π)(4)\) \(+πn\), \(n∈Z\)

Це коріння не виключається ОДЗ, тому можна його записувати у відповідь.

Відповідь: \(x=\)\(\frac(π)(4)\) \(+πn\), \(n∈Z\).

При вирішенні багатьох математичних завдань, особливо тих, що зустрічаються до 10 класу, порядок виконуваних дій, що призведуть до мети, визначено однозначно. До таких завдань можна віднести, наприклад, лінійні та квадратні рівняння, лінійні та квадратні нерівності, дробові рівняння та рівняння, що зводяться до квадратних. Принцип успішного вирішення кожної із згаданих завдань полягає в наступному: треба встановити, до якого типу належить розв'язувана задача, згадати необхідну послідовність дій, які призведуть до потрібного результату, тобто. відповіді, та виконати ці дії.

Очевидно, що успіх чи неуспіх у вирішенні того чи іншого завдання залежить головним чином від того, наскільки правильно визначено тип рівняння, що вирішується, наскільки правильно відтворена послідовність всіх етапів його вирішення. Зрозуміло, у своїй необхідно володіти навичками виконання тотожних перетворень і обчислень.

Інша ситуація виходить з тригонометричними рівняннями.Встановити факт те, що рівняння є тригонометричним, дуже неважко. Складнощі з'являються щодо послідовності дій, які призвели до правильної відповіді.

На вигляд рівняння часом буває важко визначити його тип. А не знаючи типу рівняння, майже неможливо вибрати із кількох десятків тригонометричних формул потрібну.

Щоб розв'язати тригонометричне рівняння, треба спробувати:

1. привести всі функції, що входять до рівняння до «однакових кутів»;
2. привести рівняння до «однакових функцій»;
3. розкласти ліву частину рівняння на множники тощо.

Розглянемо основні методи розв'язання тригонометричних рівнянь

I. Приведення до найпростіших тригонометричних рівнянь

Схема розв'язання

Крок 1.Виразити тригонометричну функцію через відомі компоненти.

Крок 2Знайти аргумент функції за формулами:

cos x = a; x = ± arccos a + 2πn, n ЄZ.

sin x = a; x = (-1) n arcsin a + πn, n Є Z.

tg x = a; x = arctg a + πn, n Є Z.

ctg x = a; x = arcctg a + πn, n Є Z.

Крок 3Знайти невідому змінну.

приклад.

2 cos(3x – π/4) = -√2.

Рішення.

1) cos(3x – π/4) = -√2/2.

2) 3x – π/4 = ±(π – π/4) + 2πn, n Є Z;

3x – π/4 = ±3π/4 + 2πn, n Є Z.

3) 3x = ±3π/4 + π/4 + 2πn, n Є Z;

x = ±3π/12 + π/12 + 2πn/3, n Є Z;

x = ±π/4 + π/12 + 2πn/3, n Є Z.

Відповідь: ±π/4 + π/12 + 2πn/3, n Є Z.

ІІ. Заміна змінної

Схема розв'язання

Крок 1.Привести рівняння до виду алгебри щодо однієї з тригонометричних функцій.

Крок 2Позначити отриману функцію змінної t (якщо необхідно ввести обмеження на t).

Крок 3Записати та вирішити отримане рівняння алгебри.

Крок 4.Зробити зворотну заміну.

Крок 5.Вирішити найпростіше тригонометричне рівняння.

приклад.

2cos 2 (x/2) - 5sin (x/2) - 5 = 0.

Рішення.

1) 2(1 – sin 2 (x/2)) – 5sin (x/2) – 5 = 0;

2sin 2 (x/2) + 5sin (x/2) + 3 = 0.

2) Нехай sin(x/2) = t, де | t | ≤ 1.

3) 2t 2 + 5t + 3 = 0;

t = 1 чи е = -3/2, не задовольняє умові |t| ≤ 1.

4) sin(x/2) = 1.

5) x/2 = π/2 + 2πn, n Є Z;

x = π + 4πn, n Є Z.

Відповідь: x = π + 4πn, n Є Z.

ІІІ. Метод зниження порядку рівняння

Схема розв'язання

Крок 1.Замінити дане рівняння лінійним, використовуючи при цьому формули зниження ступеня:

sin 2 x = 1/2 · (1 - cos 2x);

cos 2 x = 1/2 · (1 + cos 2x);

tg 2 x = (1 - cos 2x) / (1 + cos 2x).

Крок 2Вирішити отримане рівняння за допомогою методів І та ІІ.

приклад.

cos 2x + cos 2 x = 5/4.

Рішення.

1) cos 2x + 1/2 · (1 + cos 2x) = 5/4.

2) cos 2x + 1/2 + 1/2 · cos 2x = 5/4;

3/2 · cos 2x = 3/4;

2x = ±π/3 + 2πn, n Є Z;

x = ±π/6 + πn, n Є Z.

Відповідь: x = ±π/6 + πn, n Є Z.

IV. Однорідні рівняння

Схема розв'язання

Крок 1.Привести це рівняння до виду

a) a sin x + b cos x = 0 (однорідне рівняння першого ступеня)

або на вигляд

б) a sin 2 x + b sin x · cos x + c cos 2 x = 0 (однорідне рівняння другого ступеня).

Крок 2Розділити обидві частини рівняння на

а) cos x ≠ 0;

б) cos 2 x ≠ 0;

і отримати рівняння щодо tg x:

а) a tg x + b = 0;

б) a tg 2 x + b arctg x + c = 0.

Крок 3Вирішити рівняння відомими способами.

приклад.

5sin 2 x + 3sin x · cos x - 4 = 0.

Рішення.

1) 5sin 2 x + 3sin x · cos x - 4 (sin 2 x + cos 2 x) = 0;

5sin 2 x + 3sin x · cos x – 4sin² x – 4cos 2 x = 0;

sin 2 x + 3 sin x · cos x – 4cos 2 x = 0/cos 2 x ≠ 0.

2) tg 2 x + 3tg x - 4 = 0.

3) Нехай tg x = t, тоді

t 2 + 3t - 4 = 0;

t = 1 або t = -4, отже

tg x = 1 або tg x = -4.

З першого рівняння x = π/4 + πn, n Є Z; з другого рівняння x = -arctg 4 + πk, k Є Z.

Відповідь: x = π/4 + πn, n Є Z; x = -arctg 4 + πk, k Є Z.

V. Метод перетворення рівняння за допомогою тригонометричних формул

Схема розв'язання

Крок 1.Використовуючи всілякі тригонометричні формули, привести дане рівняння до рівняння, яке вирішується методами I, II, III, IV.

Крок 2Вирішити отримане рівняння відомими методами.

приклад.

sin x + sin 2x + sin 3x = 0.

Рішення.

1) (sin x + sin 3x) + sin 2x = 0;

2sin 2x · cos x + sin 2x = 0.

2) sin 2x · (2cos x + 1) = 0;

sin 2x = 0 або 2cos x + 1 = 0;

З першого рівняння 2x = π/2 + πn, n Є Z; із другого рівняння cos x = -1/2.

Маємо х = π/4 + πn/2, n Є Z; із другого рівняння x = ±(π – π/3) + 2πk, k Є Z.

Через війну х = π/4 + πn/2, n Є Z; x = ±2π/3 + 2πk, k Є Z.

Відповідь: х = π/4 + πn/2, n Є Z; x = ±2π/3 + 2πk, k Є Z.

Вміння та навички вирішувати тригонометричні рівняння є дуже важливими, їхній розвиток потребує значних зусиль, як з боку учня, так і з боку вчителя.

З рішенням тригонометричних рівнянь пов'язані багато завдань стереометрії, фізики, та інших. Процес розв'язання таких завдань хіба що містить у собі багато знання й уміння, які набувають щодо елементів тригонометрії.

Тригонометричні рівняння займають важливе місце у процесі навчання математики та розвитку особистості загалом.

Залишились питання? Не знаєте, як розв'язувати тригонометричні рівняння?
Щоб отримати допомогу репетитора – зареєструйтесь.
Перший урок – безкоштовно!

сайт, при повному або частковому копіюванні матеріалу посилання на першоджерело обов'язкове.

Ви можете замовити докладне вирішення вашої задачі!

Рівність, що містить невідому під знаком тригонометричної функції (`sin x, cos x, tg x` або `ctg x`), називається тригонометричним рівнянням, саме їх формули ми й розглянемо далі.

Найпростішими називаються рівняння `sin x=a, cos x=a, tg x=a, ctg x=a`, де `x` - кут, який потрібно знайти, `a` - будь-яке число. Запишемо для кожного з них формули коріння.

1. Рівняння `sin x=a`.

При `|a|>1` немає рішень.

При `|a| \leq 1` має нескінченну кількість рішень.

Формула коренів: `x=(-1)^n arcsin a + \pi n, n \in Z`

2. Рівняння `cos x=a`

При `|a|>1` — як і у випадку із синусом, рішень серед дійсних чисел не має.

При `|a| \leq 1` має безліч рішень.

Формула коренів: x = p arccos a + 2 pi n, n in Z

Приватні випадки для синуса та косинуса у графіках.

3. Рівняння `tg x=a`

Має безліч рішень при будь-яких значеннях `a`.

Формула коренів: `x=arctg a + \pi n, n \in Z`

4. Рівняння `ctg x=a`

Також має безліч рішень при будь-яких значеннях `a`.

Формула коренів: `x=arcctg a + \pi n, n \in Z`

Формули коренів тригонометричних рівнянь у таблиці

Для синусу:
Для косинуса:
Для тангенсу та котангенсу:
Формули розв'язання рівнянь, що містять зворотні тригонометричні функції:

Методи розв'язання тригонометричних рівнянь

Розв'язання будь-якого тригонометричного рівняння складається з двох етапів:

  • за допомогою перетворити його до найпростішого;
  • вирішити отримане найпростіше рівняння, використовуючи вище написані формули коренів та таблиці.

Розглянемо на прикладах основні способи розв'язання.

Алгебраїчний метод.

У цьому вся методі робиться заміна змінної та її підстановка на рівність.

приклад. Розв'язати рівняння: `2cos^2(x+\frac \pi 6)-3sin(\frac \pi 3 - x)+1=0`

`2cos^2(x+frac \pi 6)-3cos(x+frac \pi 6)+1=0`,

робимо заміну: `cos(x+\frac \pi 6)=y`, тоді `2y^2-3y+1=0`,

знаходимо коріння: `y_1=1, y_2=1/2`, звідки випливають два випадки:

1. ` cos (x + frac \ pi 6) = 1 `, ` x + \ frac \ pi 6 = 2 \ pi n `, ` x_1 = - \ frac \ pi 6 +2 \ pi n `.

2. `cos(x+\frac \pi 6)=1/2`, `x+\frac \pi 6=\pm arccos 1/2+2\pi n`, `x_2=\pm \frac \pi 3- \frac \pi 6+2\pi n`.

Відповідь: `x_1=-\frac \pi 6+2\pi n`, `x_2=\pm \frac \pi 3-frac \pi 6+2\pi n`.

Розкладання на множники.

приклад. Розв'язати рівняння: `sin x+cos x=1`.

Рішення. Перенесемо вліво всі члени рівності: `sin x+cos x-1=0`. Використовуючи , перетворимо та розкладемо на множники ліву частину:

`sin x - 2sin^2 x/2=0`,

`2sin x/2 cos x/2-2sin^2 x/2=0`,

`2sin x/2 (cos x/2-sin x/2)=0`,

  1. ` sin x/2 = 0 `, ` x/2 = \ pi n `, ` x_1 = 2 \ pi n `.
  2. `cos x/2-sin x/2=0`, `tg x/2=1`, `x/2=arctg 1+ \pi n`, `x/2=\pi/4+ \pi n` , `x_2=pi/2+ 2pi n`.

Відповідь: `x_1=2pi n`, `x_2=pi/2+ 2pi n`.

Приведення до однорідного рівняння

Спочатку потрібно це тригонометричне рівняння привести до одного з двох видів:

`a sin x+b cos x=0` (однорідне рівняння першого ступеня) або `a sin^2 x + b sin x cos x +c cos^2 x=0` (однорідне рівняння другого ступеня).

Потім розділити обидві частини на `cos x \ ne 0` - для першого випадку, і на ` cos ^ 2 x \ ne 0` - для другого. Отримаємо рівняння щодо `tg x`: `a tg x+b=0` та `a tg^2 x + b tg x +c =0`, які потрібно вирішити відомими способами.

приклад. Розв'язати рівняння: `2 sin ^ 2 x + sin x cos x - cos ^ 2 x = 1 `.

Рішення. Запишемо праву частину, як `1=sin^2 x+cos^2 x`:

`2 sin^2 x+sin x cos x - cos^2 x=`` sin^2 x+cos^2 x`,

`2 sin^2 x+sin x cos x - cos^2 x - `` sin^2 x - cos^2 x=0`

` sin ^ 2 x + sin x cos x - 2 cos ^ 2 x = 0 `.

Це однорідне тригонометричне рівняння другого ступеня, розділимо його ліву та праву частини на `cos^2 x \ne 0`, отримаємо:

`\frac(sin^2 x)(cos^2 x)+\frac(sin x cos x)(cos^2 x) - \frac(2 cos^2 x)(cos^2 x)=0`

`tg^2 x + tg x - 2 = 0`. Введемо заміну `tg x=t`, в результаті `t^2 + t - 2=0`. Коріння цього рівняння: `t_1=-2` та `t_2=1`. Тоді:

  1. `tg x=-2`, `x_1=arctg (-2)+\pi n`, `n \in Z`
  2. `tg x=1`, `x=arctg 1+\pi n`, `x_2=\pi/4+\pi n`, `n \in Z`.

Відповідь. `x_1=arctg (-2)+\pi n`, `n \in Z`, `x_2=\pi/4+\pi n`, `n \in Z`.

Перехід до половинного кута

приклад. Розв'язати рівняння: `11 sin x - 2 cos x = 10`.

Рішення. Застосуємо формули подвійного кута, в результаті: `22 sin (x/2) cos (x/2) - ``2 cos^2 x/2 + 2 sin^2 x/2=``10 sin^2 x/2 +10 cos^2 x/2`

`4 tg^2 x/2 - 11 tg x/2 +6=0`

Застосувавши описаний вище метод алгебри, отримаємо:

  1. `tg x/2=2`, `x_1=2 arctg 2+2\pi n`, `n \in Z`,
  2. `tg x/2=3/4`, `x_2=arctg 3/4+2\pi n`, `n \in Z`.

Відповідь. `x_1=2 arctg 2+2\pi n, n \in Z`, `x_2=arctg 3/4+2\pi n`, `n \in Z`.

Введення допоміжного кута

У тригонометричному рівнянні `a sin x + b cos x = c`, де a, b, c – коефіцієнти, а x – змінна, розділимо обидві частини на `sqrt (a^2+b^2)`:

`\frac a(sqrt (a^2+b^2)) sin x +` `\frac b(sqrt (a^2+b^2)) cos x =` `frac c(sqrt (a^2 +b^2))`.

Коефіцієнти в лівій частині мають властивості синуса та косинуса, а саме сума їх квадратів дорівнює 1 та їх модулі не більше 1. Позначимо їх наступним чином: `\frac a(sqrt(a^2+b^2))=cos \varphi` , ` \frac b(sqrt (a^2+b^2)) =sin \varphi`, `\frac c(sqrt (a^2+b^2))=C`, тоді:

` cos \ varphi sin x + sin \ varphi cos x = C `.

Докладніше розглянемо на наступному прикладі:

приклад. Розв'язати рівняння: `3 sin x+4 cos x=2`.

Рішення. Розділимо обидві частини рівності на `sqrt (3^2+4^2)`, отримаємо:

`\frac (3 sin x) (sqrt (3^2+4^2))+``\frac(4 cos x)(sqrt (3^2+4^2))=` `frac 2(sqrt (3^2+4^2))`

`3/5 sin x+4/5 cos x=2/5`.

Позначимо `3/5 = cos \ varphi`, `4/5 = sin \ varphi`. Так як ` sin \ varphi> 0 `, ` cos \ varphi> 0 `, то як допоміжний кут візьмемо ` \ varphi = arcsin 4/5 `. Тоді нашу рівність запишемо у вигляді:

`cos \varphi sin x+sin \varphi cos x=2/5`

Застосувавши формулу суми кутів для синуса, запишемо нашу рівність у такому вигляді:

`sin (x+\varphi) = 2/5`,

`x+\varphi=(-1)^n arcsin 2/5+ \pi n`, `n \in Z`,

`x=(-1)^n arcsin 2/5-` `arcsin 4/5+ \pi n`, `n \in Z`.

Відповідь. `x=(-1)^n arcsin 2/5-` `arcsin 4/5+ \pi n`, `n \in Z`.

Дробно-раціональні тригонометричні рівняння

Це рівності з дробами, у чисельниках та знаменниках яких є тригонометричні функції.

приклад. Вирішити рівняння. frac (sin x) (1 + cos x) = 1-cos x `.

Рішення. Помножимо та розділимо праву частину рівності на `(1+cos x)`. В результаті отримаємо:

`\frac (sin x)(1+cos x)=``\frac ((1-cos x)(1+cos x))(1+cos x)`

`\frac (sin x)(1+cos x)=``\frac (1-cos^2 x)(1+cos x)`

`\frac (sin x)(1+cos x)=``\frac (sin^2 x)(1+cos x)`

`\frac (sin x)(1+cos x)-``\frac (sin^2 x)(1+cos x)=0`

`\frac (sin x-sin^2 x)(1+cos x)=0`

Враховуючи, що знаменник рівним бути нулю не може, отримаємо `1+cos x \ne 0`, `cos x \ne -1`, ` x \ne \pi+2\pi n, n \in Z`.

Прирівняємо до нуля чисельник дробу: `sin x-sin^2 x=0`, `sin x(1-sin x)=0`. Тоді `sin x=0` або `1-sin x=0`.

  1. `sin x=0`, `x=\pi n`, `n \in Z`
  2. `1-sin x=0`, `sin x=-1`, `x=\pi /2+2\pi n, n \in Z`.

Враховуючи, що ` x \ne \pi+2\pi n, n \in Z`, рішеннями будуть `x=2\pi n, n \in Z` та `x=\pi /2+2\pi n` , `n \ in Z`.

Відповідь. `x=2\pi n`, `n \in Z`, `x=\pi /2+2\pi n`, `n \in Z`.

Тригонометрія та тригонометричні рівняння зокрема застосовуються майже у всіх сферах геометрії, фізики, інженерії. Починається вивчення в 10 класі, обов'язково присутні завдання на ЄДІ, тому постарайтеся запам'ятати всі формули тригонометричних рівнянь - вони вам знадобляться!

Втім, навіть запам'ятовувати їх не потрібно, головне зрозуміти суть і вміти вивести. Це не так складно, як здається. Переконайтеся, переглядаючи відео.